

Tetrahedron Letters, Vol. 38, No. 7, pp. 1201-1202, 1997 Copyright © 1997 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0040-4039/97 \$17.00 + 0.00

PII: S0040-4039(97)00016-6

Akaterpin, a Novel Bioactive Triterpene from the Marine Sponge *Callyspongia* sp.

Akiko Fukami¹, Yoko Ikeda², Shinichi Kondo², Hiroshi Naganawa², Tomio Takeuchi², Shigeki Furuya³, Yoshio Hirabayashi³, Kazuyuki Shimoike⁴, Saburo Hosaka⁴, Yoko Watanabe⁵, and Kazuo Umezawa^{*1}

¹ Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan

² Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

³ Frontier Research Program, The Institute of Chemical and Physical Research (Riken), 2-1 Hirosawa, Wako, Saitama 351-01, Japan

⁴ Akajima Marine Science Laboratory, 179 Aka, Zamami, Okinawa 901-33, Japan

⁵ Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112, Japan

Abstract: Akaterpin (1), an inhibitor of phosphatidylinositol-specific phospholipase C, was isolated from an acetone extract of the marine sponge, *Callyspongia* sp. Structural determination by 2D-NMR spectroscopy revealed that it was a novel triterpene with the hydroquinone disulfate. © 1997, Elsevier Science Ltd. All rights reserved.

Many growth factors and hormones induce cellular phosphatidylinositol turnover¹, in which phosphatidylinositol-specific phospholipase C (PI-PLC) is the rate-limiting enzyme. For the isolation of akaterpin, an inhibitor of PI-PLC, the inhibitor was extracted from the marine sponge *Callyspongia* sp. (27.9 g) with 30 ml of butanol after an initial extraction with the same volume of acetone. The butanol extract was concentrated *in vacuo* and the residue was applied to a silica gel column. The column was eluted with chloroform-methanol (10:0-10:5). The active fraction (eluted with CHCl₃:MeOH=10:3-10:4) was subjected to preparative HPLC (Senshu Pak, Pegasil-ODS, 20 ϕ x 250 mm, flow rate

5 ml/min) with elution with a linear gradient of 35-50% aqueous acetonitrile. Akaterpin (12.0 mg) was eluted with a peak at 118 min.

Akaterpin (1) was obtained as a colorless solid, mp >240°C; $[\alpha]_D^{24}$ +15° (*c* 0.59, MeOH); UV (MeOH): λ_{max} (ε) 207 (16800), 275 nm (1070); IR (KBr): ν_{max} 3504, 3392, 2962, 2929, 2887, 1630, 1485, 1460, 1381, 1265 (SO₂), 1232 (SO₂), 1182, 1061, 1045, 964, 889, 854 cm⁻¹; FAB-MS (pos.): *m*/z 745 (M+Na)⁺, 723 (M+H)⁺, 643 (M+H-SO₃)⁺; FAB-MS (neg.): *m*/z 699 (M-Na); FAB-HRMS (neg.): *m*/z 677, 3184 (M+H-Na₂)⁻, calcd for C₃₆H₅₃O₈S₂, 677, 3182. The 1D-NMR (¹H, ¹³C and differential NOE) and 2D-NMR (¹H-¹H COSY, HMQC, HMBC and NOESY) spectra in CD₃OD were obtained on a 400 MHz or 500 MHz spectrometer (Table 1).

(Relative stereochemistry in each decalin moiety)

The formula $C_{36}H_{52}O_8S_2Na_2$, having the sodium salt of the hydroquinone disulfate, was supported by the spectral analyses. The hexaisoprenoid structure consisting of two decalin moieties was determined by extensive NMR measurements (¹H-¹H COSY, HMQC and HMBC). The ¹H and ¹³C chemical shifts were assigned as shown in Table 1. The relative stereochemistry of akaterpin was elucidated from NOESY and differential NOE experiments. Among six methyl groups on the decalin moieties, a *cis* relation of 4-CH₃ (δ 0.86) and 5-CH₃ (δ 0.59) on the opposite side of 6-H (δ 2.23) was suggested by NOE. In addition, two NOE's between 4'-CH₃ (δ 1.15) and 6'-H (δ 1.68) and between 4'-CH₃ and 11'-H (δ 2.40) suggested that 6'-H and 11'-H are on the same side as 4'-CH₃. An NOE between 5'-CH₃ (δ 1.03) and 12-Ha (δ 2.13) could not be identified, because the 5'-CH₃ signal overlapped with 12-Hb (δ 1.04). No cross peak between 5'-CH₃ and 12-Ha, or between 6'-H and 12-Ha was observed in NOESY. Therefore, the stereochemistry at C-1' remained undefined, and the relative stereochemistry in each decaline moiety was determined, as shown in structure 1. The triterpenoid structure of 1 is clearly different from that of toxiusol², which has the same molecular formula in the hexaisoprenoid moiety. The exo-ene structure at C-10' is also found in spongederived siphonodictyoic acid³.

In vitro PI-PLC activity was measured as previously described⁴, and the IC₅₀ value of 1 was 0.5 μ g/ml. Akaterpin also inhibited neutral sphingomyelinase weakly with an IC₅₀ of 30 μ g/ml. Other PI-PLC inhibitors include fluvirucin B₂⁴ and pholipeptin⁵. Akaterpin was the most potent in inhibiting the enzyme.

Position	¹³ C	¹ H	Position	¹³ C	ιH	Position	¹³ C	¹ H
1	147 4		10-(CH.).	30.3	1.06s	7,	22.4	2.20m
$\frac{1}{2}$	117.4	5.47ddd	10 (01-3/2	29.5	1.04s			1.99m
3	32.7	1.84ddd	11	30.2	1.15m	8'	25.7	1.65m
		1.77ddd	12	36.4	2.13ddd	9'	34.0	2.32ddd
4	34.6	1.47m			1.04m			2.18m
4-CH ₂	15.6	0.86d	1'	44.1		10'	153.4	
5	37.6		2'	28.3	1.98m	10'-CH,	109.4	4.76brs
5-CH,	16.8	0.59s			1.46m	1 1		4.73brs
6 [°]	41.0	2.23m	3'	26.2	1.96m	11'	37.3	3.32d
7	28.9	1.68m			1.20m	l		2.40d
		0.98m	4'	38.6	1.65m	1"	150.1	
8	23.3	1. 57 m	4'-CH,	16.5	1.15d	2"	135.2	
9	42.2	1.42m	5'	43.1		3"	125.1	7.30d ^a
		1.20m	5'-CH,	25.2	1.03s	4"	149.9	
10	37.1		6'	47.0	1.68m	5"	120.4	7.09dd⁵
						6"	123.2	7.38d°
$^{\bullet}$ J=2.4 Hz $^{\circ}$ J=2.4, 8.5 Hz $^{\circ}$ J=8.5 Hz								

Table 1. ¹H and ¹³C NMR data (δ) in CD₃OD for akaterpin

References

- 1. Berridge, M. J. Ann. Rev. Biochem. 1988, 56, 159-193.
- 2. Isaacs, S.; Hizi, A.; Kashman, Y. Tetrahedron 1993, 49, 4275-4282.
- 3. Sullivan, B. W.; Faulkner, D. J.; Matsumoto, G. K.; Cun-heng, H.; Clardy, J. J. Org. Chem. 1986, 51, 4568-4573.
- 4. Ui, H.; Imoto, M.; Umezawa, K. J. Antibiot. 1995, 48, 387-390.
- 5. Ui, H.; Miyake, T.; Iinuma, H.; Imoto, M.; Hattori, S.; Hamada, M.; Takeuchi, T.; Umezawa, S.; Umezawa, K. Tetrahedron Lett. 1995, 36, 7479-7480.